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ABSTRACT

Outcrops of limestone and(or) dolomite marble are present throughout the San
Bernardino National Forest, California. Where possible, these Precambrian to Late
Paleozoic carbonate rocks are divided into the Bonanza King Formation, the Nopah
Formation, the Sultan Limestone, the Monte Cristo Limestone, and the Bird Spring
Formation. Other carbonate rocks are mapped as the Furnace Limestone or as members
of the Desert Divide Group and the Palm Canyon Complex where existing geologic data
does not differentiate between the .various limestone and dolomite units. Past mining in
the national forest, combined with new geologic and geochemical data, indicate that all of
the carbonate rocks within the San Bernardino National Forest have high resource
potential for construction-grade carbonate rocks. These rocks have been quarried for
roofing materials, construction stone, and industrial uses for more than 100 years;
demand for these materials is expected to increase at an annual growth rate of 2-4
percent to the year 2000. White marble in the Bonanza King and the Nopah formations,
the lower and middle members of the Bird Springs Formation, and marble in the Desert
Divide Group have high resource potential for cement-grade carbonate rocks. The
Crystal Pass Member of the Sultan Limestone and the middle member of the Monte Cristo
Limestone have high resource potential for chemical-grade carbonate rocks. These high
grade (high CaO, high brightness) marbles are used as fillers and extenders in the
paper, paint, and plastics industries and yield the greatest per unit value of any of the

carbonate rocks in the San Bernardino National Forest.

INTRODUCTION

Carbonate rocks, consisting of limestone (CaCO3) or dolomite (CaMg{COas}2)
marble, are present in the eastern San Gabriel, San Bernardino, and San Jacinto
Mountains of the San Bernardino National Forest, California (fig. 1). These rocks have
been quarried from the 1880s to the present day and produce several million tons of
limestone-based products per year for the construction, cement, chemical, and
pharmaceutical industries. Part of this national forest is adjacent to the Lucerne Valley
Limestone Mining District, one of the largest limestone producing districts in the United
States (fig. 1); gross sales from this district alone are $180-220 million per year
(Fife, 1988). This report describes the geology and geochemistry of the carbonate

rocks as well as carbonate-rock quarries, mines, and prospects in the San Bernardino



National Forest; these data are used to assess the resource potential of carbonate rocks in
the national forest.

GEOLOGY AND GEOCHEMISTRY
EASTERN SAN GABRIEL MOUNTAINS
Geologic Setting

The eastern San Gabriel Mountains are divided into two distinctive geologic
terranes by the Icehouse Canyon Fault (Plate 1). Rocks north of this fault include the
Mesozoic Pelona Schist and a mylonitic and gneissic granite complex. The Pelona Schist
consists of well-foliated blue-gray mica schist and green-gray chlorite schist;
discontinuous layers of metachert, siliceous schist, interbedded marble and quartzite,
and greenstone also occur within this unit. All of these rocks are folded and
metamorphosed to upper greenschist or lower amphibolite grade and are structurally
overlain by the mylonitic and gneissic complex. This metamorphic complex consists of
hard platy black mylonite grading upward into gray foliated cataclastic rocks. The
Pelona Schist and the overlying metamorphic complex are intruded by the 14- to 16-Ma
Lytle Creek pluton (Morton and Matti, written commun., 1993).

Rocks south of the Icehouse Canyon Fault include the Paleozoic(?) Placerita
metasedimentary suite and retrograde metamorphosed and mylonitized granulite; all of
these rocks are intruded by late Mesozoic granitic rocks that include massive to gneissic
gray quartz diorite and massive gray to white granodiorite and quartz monzonite. The
metasedimentary suite consists of approximately 7,000 ft of tan quartzite, gray to white
marble, and amphibolite-grade biotite schist. The mylonitized granulite consists of
Precambrian(?) cataclastic gneiss and discontinuous lenses of marble; pods, up to 1.2
mi long, of light-gray 70-Ma charnockitic rocks occur locally in the gneiss (Dibblee,
1982; Morton and others, 1983; Morton and Matti, written commun., 1993).

The pre-Tertiary crystalline rocks are overlain by sedimentary deposits in
Cajon Valley (Plate 1). The sedimentary deposits include the Cretaceous or Paleocene
San Francisquito(?) Formation, the lower Miocene Vaqueros(?) Formation, the middle
and upper Miocene rocks of Cajon Valley, the lower to upper Miocene Crowder

Formation, and the upper Miocene to Pliocene rocks of Phelan Peak; small outcrops of



folded Tertiary sandstone and conglomerate are also located near the mouth of Lytie Creek
(Plate 1). The rocks of Cajon Valley, the Crowder Formation, and the rocks of Phelan
Peak are unconformably overlain by the Pleistocene Harold Formation; this unit grades
upward into the Pleistocene Shoemaker Gravel which is unconformably overlain by
Pleistocene and Holocene alluvial deposits (Dibblee, 1982; Morton and Matti, written
commun., 1993).

Carbonate Rocks

Carbonate rocks in the eastern San Gabriel Mountains are present south of the’
Icehouse Canyon Fault and along the San Andreas Fauit near Wrightwood (Plate 1). Gray
to white marble south of the Icehouse Canyon Fauit near Lytle Creek is present as
pendants or septa in plutonic rocks and is interbedded with hornfels, slate, and
micaceous quartzite; the marble beds thicken to the west and occur with quartzite,
schist, and graphitic schist in San Antonio Canyon (Morton and others, 1983). White
dolomitic marble along San Antonio Canyon was mined as filler from 1958 to 1963;
similar rocks have been quarried for roofing granules in the western part of the range
(Gray, 1982; Dibblee, 1982).

Carbonate rocks north of the Icehouse Canyon Fault occur in a narrow east-west-
trending belt, approximatély 4 mi long, north of Wrightwood, and as discontinuous pods
and lenses along the San Andreas Fault south of Wrightwood (Plate 1). The Big Pine and
the Sheep Creek Mines are located within the belt of carbonate rocks north of
Wrightwood. White dolomitic(?) marble occurs as lenses and pendants in granite and
gneiss at the Big Pine Mine (Table 1, no. 1). This marble contains too much magnesium
for use in cement, but is excellent for roofing rock, sand (fines), and aggregate material
(Dibblee, -1982; Gray, 1982).

Cloudy white coarse-crystalline marble at the Sheep Creek Mine (Table 1, no.
2) occurs in northwest-trending lenses in granite; the lenses are approximately 1000
ft long and at least 100 ft wide and are cut by numerous granitic dikes. Chemical
analyses indicate that the marble contains 50.5-53.4 percent CaO and 0.7-1.1 percent
MgO (weight percent oxides in this report are recalculated from whole-rock chemical
analyses with volatiles removed). These data indicate that marble at Sheep Creek Mine
is suitable for portland cement; selected beds are chemically pure enough for special
uses (Logan, 1947).



Marble at the Cajon Mine (Table 1, no. 3) occurs as discontinuous northwest-
trending lenses in gneiss and schist along the San Andreas Fault south of Wrightwood.
These rocks have been mined sporadically since the mid-1920's and are quarried for
agricultural arid industrial uses (Logan, 1947). '

SAN BERNARDINO MOUNTAINS
Geologic Setting

The oldest rocks in the San Bernardino Mountains are located east of Big Bear
Lake and were named the Baldwin Gneiss by Guillou (1953). Cameron (1982) divided
the Baldwin Gneiss into an older sequence of well-foliated and compositionally-layered
paragneiss, schist, and quartzite, and a younger sequence of 1750+15-Ma (Silver,
1971) orthogneiss and pegmatite dikes.

Metasedimentary rocks unconformably overlie the Baldwin Gneiss north, east,
and south of Big Bear Lake and are divided into a quartzite sequence and a carbonate
sequence. The quartzite sequence consists of the Big Bear Group (?7), the Johnnie(?)
Formation, the Stirling Quartzite, the Wood Canyon Formation, and the Zabriskie
Quartzite and ranges in age from Late Proterozoic into Early Cambrian (fig. 2). The
carbonate sequence is divided into a dolomite-dominated unit unconformably overlain by
a limestone-dominated unit. The dolomite-dominated unit consists of the Carrara
Formation, the Bonanza King Formation, and the Nopah Formation; all of these rocks are
Cambrian in age. The limestone-dominated unit consists of the Devonian Sultan
Limestone, the Miséissippian Monte Cristo Limestone, and the Pennsylvanian and
Permian Bird Spring Formation. Ordovician and Silurian rocks have not been recognized
in the San Bernardino Mountains (Tyler 1979; Brown, 1991; Morton and Matti,
written commun., 1993).

The Baldwin Gneiss and younger metasedimentary rocks are intruded by a variety
of late Paleozoic and Mesozoic plutonic rocks in the San Bernardino Mountains. The
oldest plutonic rocks are Permian and Triassic (214+2.9 Ma; Miller and Cameron,
1982) alkalic hornblende monzonites that intrude deformed marble north of Big Bear
Lake; Jurassic (156-158 Ma) diorite, quartz diorite, and tonalite are also present in
this area. Shallow;level Jurassic(?) quartz latite porphyry plutons and dikes at the



base of the mountains have been correlated with the Sidewinder Volcanic Series of Bowen
(1954) in the Victorville area (Smith, 1982). All of these rocks are enguifed by
several Late Cretaceous (70-80 Ma; Miller and Morton, 1980) biotite quartz
monzonite batholiths that are exposed over several hundred square miles in and north of
the San Bernardino Mountains. The youngest plutonic rocks are steeply-dipping light-
gray felsite dikes characterized by folded flow foliation and spherulitic chilled border
zones. The dikes clearly cut all other plutonic rocks in the San Bernardino Mountains
and may be Tertiary in age (Brown, 1991).

Tertiary sedimentary rocks are exposed in two areas in the San Bernardino
Mountains. - The Miocene Santa Ana Sandstone of Vaughan (1922) unconformably
overlies Mesozoic granitic rocks and Precambrian gneiss along the Santa Ana River;
scattered exposures of the Pliocene Old Woman Sandstone unconformably overlie the
granitic and metasedimentary rocks along the northern front of the mountains. These
Tertiary sedimentary rocks may represent the remnants of a sedimentary blanket that

covered the San Bernardino Mountains (Morton and Matti, written commun., 1993).
Carbonate Rocks

A relatively complete section of the metasedimentary carbonate sequence is well
exposed along the northern front of the north-central San Bernardino Mountains just
south of the Lucerne Valley Limestone Mining District; pendants and fault slivers of
these carbonate rocks are aiso exposed in the Sugarloaf Mountain-Onyx Peak area and
along the San Andreas Fault, respectively (Plate 1). Ali of these rocks have been
metamorphosed to marble during Mesozoic intrusive events (Brown, 1991).

The Carrara Formation, the oldest formation within the carbonate sequence,
consists of phyllite, schist, and thin beds of limestone marble (fig. 2). The marble beds
are relatively rare and, save for the Coon Creek Jumpoff prospect (Table 1, no. 36),

have not been exploited for carbonate resources.

The Bonanza King Formation is well exposed from the crest of White Mountain to
Bertha Ridge and in a narrow continuous belt beneath the Doble Thrust from the north
end of Lone Valley to Onyx Peak; isolated pendants of this formation are present south and
east of Onyx Peak (Plate 1). it consists of thin-bedded to massive, light- to dark-gray,
slightly dolomitic marble and tan, gray, and white, banded dolomite (fig. 2). The



dolomitic marble contains 50.5-57.4 percent CaO and 3.7-5.3 percent MgO (Table 2);
these rocks are generally iron stained and contain pyrite. The banded dolomite is
characterized by a mottied texture and locally includes cherty and(or) siliceous beds;
these rocks contain 37.0-39.0 percent CaO, =20.5-25.0 percent MgO, and =1.0-8.0
percent SiO2 (Table 2). Bowen (1973) and Fife and Brown (1982) reported that the
White Mountain #2 prospect (Table 1, no. 14) contains >20x10°6 tons of white
dolomitic marble with 50-55 percent CaO and less than 3.5 percent MgO; Matti and
others (1993) mapped these rocks as part of the Bonanza King Formation.

The Nopah Formation inciudes the Dunderberg Shale Member overlain by a thick
dolomite member. The Dunderberg Shale Member crops out in Furnace Canyon (Plate 1)
and consists of brown and gray shale, siltstone, and hornfels interbedded with brown and
gray sandy dolomite and limestone. The dolomite member occurs in large outcrops from
Furnace Canyon to Holcomb Valley (Plate 1) and consists of medium-bedded to massive
white to gray fine-crystalline to sugary dolomite with a 'few cherty or siliceous beds.
The dolomite contains 36-39 percent CaQ and 18-20 percent MgO (Table 2); white
limestone marble at the Lucerne Valley deposit, however, contains as much as 55
percent CaO and as little as 0.4 percent MgO (Table 1, no. 19). This relatively high-
grade marble is mapped as part of the Nopah Formation and occurs near intrusive
contacts with granitic rocks (Matti and others, 1993).

The Sultan Limestone crops out between Furnace Canyon and Cushenbury Canyon
(Plate 1) and is divided into the Ironside, Valentine, and Crystal Pass Members. The
Ironside Member consists of medium-bedded to massive gray dolomite with white calcite
veinlets that resemble worm tubes. The dolomite contains approximately 36-37
percent Ca0O, about 23 percent MgO (Table 3), and has been quarried for roofing
granules (Brown, 1987). The Valentine Member consists of thin-bedded to massive,
gray, yellowish-brown, and white, fine-crystalline dolomite with rare cherty or
siliceous beds; stromatoporoids are present but not common. The Crystal Pass Member
consists of medium- to thick-bedded platy white limestone marble with thin dark-gray
limestone and dolomite layers; the number of limestone and dolomite layers decreases
upsection. The white marble contains 50.2-55.7 percent CaO, less than 1 percent MgO
(Table 3), and is often iron stained.

The Monte Cristo Limestone is exposed in discontinuous outcrops from White
Mountain through Furnace Canyon to Cushenbury Canyon (Plate 1) and is divided into



lower, middle, and upper members. The lower member is laterally equivalent to the
Dawn and Anchor Limestone Members of the Monte Cristo Formation in the southern
Great Basin and consists of thin- to medium-bedded gray limestone and cherty limestone
with dark-gray chert nodules and discontinuous chert layers; the number of chert
nodules and chert layers becomes more common upsection. The middle member is
laterally equivalent to the Bullion Dolomite Member of the Monte Cristo Formation in
the southern Great Basin and consists of light-gray to white limestone marble
characterized by abundant pelmatozoan debris and crinoid fragments. The marble
contains 54.7-55.9 peréent Ca0, less than 1 percent MgO (Table 4), and has been
extensively quarried for pure limestone-based products (Brown, 1987); white, high-
grade limestone marble from the White Mountain prospect (Table 1, no. 13) is obtained
from this member. The upper member consists of gray limestone marble with a few
dolomite or siliceous marble layers. This member contains pelmatozoan debris, corals,
and crinoids and is laterally equivalent to the Yellowpine Limestone Member of the Monte
Cristo Formation in the southern Great Basin.

The Bird Spring Formation is divided into lower, middle, and upper members
that are exposed along the northern front of the San Bernardino Mountains from White
Mountain to Blackhawk Mountain then southward to Tip Top Mountain (Plate 1). The
lower member consists of a basal clastic interval overlain by a carbonate interval. The
clastic interval consists of quartzite, metasiltstone, and chert locally interbedded with
limestone. The carbonate interval consists of gray to white limestone marble
interbedded with brown-weathering dolomite and(or) siliceous layers as well as a dark-
gray limestone layer. The geochemistry of the carbonate rocks varies within this unit.
For example, cement-grade marble from Mitsubishi Cement Corporation's Cushenberry
Canyon Quarry (Table 1, no. 17) contains 52-53 percent Ca0, less than 1 percent MgO,
and 3.4-4.8 percent SiOs (Table 5); these same rocks were mined in the 1950s as flux
for Kaiser Steel mills in the Los Angeles area (Fife, 1988). Gray marble at the Smart
Ranch deposit (Table 1, no. 28) contains 53-55.6 percent CaO, 0.6-2.2 percent MgO,
and was quarried for roofing granules until 1975 (Brown, 1982); marble at the
Terrace Spring deposit (Table 1, no. 27) was quarried for swimming pool sand and for
pigment used in white stucco (Fife, 1982).

The middie member of the Bird Spring Formation consists of gray silty and(or)
cherty limestone marble with lenses and layers of sandstone and siltstone. Marble in

this member is geochemically similar to marble in the lower member and is mined at



the Cushenberry Canyon Quarry (Table 1, no. 17) and the Carriere Limestone prospect
(Table 1, no. 20) The upper member consists of light-colored limestone marble with
layers of white to gray mottled marble and dirty siliceous marble. The limestone marble
contains 35.6-40 percent CaO and 1.5-2 percent MgO; the siliceous marble contains
28+ percent SiOp (Table 5).

Carbonate rocks along the San Andreas Fault in the western San Bernardino
Mountains and in the Ord Mountains are collectively mapped as the Paleozoic Furnace
Limestone (Plate 1). These rocks are lithologically similar to rocks in the north-
central San Bernardino Mountains, but time constraints precluded mapping out the
various dolomite and limestone units. Tucker and Sampson (1943) reported that white
limestone at the Devil Canyon and other prospects along the San Andreas Fault (Table 1,
nos. 4-9, 37,38) have been extensively mined and(or) quarried for roofing granules.
Dolomite from the Hesperia Mine (Table 1, no. 10) contains 32 percent CaO, 21-22
percent MgO, and less than 0.5 percent SiO2 (Logan, 1947).

SAN JACINTO MOUNTAINS

Geologic Setting

The oldest rocks in the San Jacinto Mountains are the Desert Divide Group of
Brown (1980, 1981) and the Palm Canyon Complex of Miller (1944). The Desert
Divide Group occurs in the lower plate of the Palm Canyon Fault (Plate 2) and consists
of about 8,000 ft of quartz- and carbonate-rich metasedimentary rocks that are divided
into the Bull Canyon Formation and the Ken Quartzite (Brown, 1980, 1981). The Bull
Canyon Formation consists of well-foliated quartz-feldspar-biotite gneiss, biotite
schist, quartzite, and marble (fig. 2). The gneiss and the schist contain garnet and
silimanite and were probably derived from a clastic marine protolith; the marble may
correlate with carbonate rocks south of the national forest that contain Ordovician
conodonts (Dockum and Miller, 1982). The Ken Quartzite consists of 95 to 98 percent
quartzite with minor lenses of marble, schist, and gneiss (fig. 2). Metamorphic
mineral assemblages within the Bull Canyon Formation indicate that the Desert Divide
Group was regionally metamorphosed to the garnet-amphibolite facies, probably during
intrusion of the Mesozoic Peninsular Ranges batholith.



The Palm Canyon Complex occurs in the upper plate o'f the Paim Canyon Fault
(Plate 2) and consists of pelitic schist, gneiss, marble, and metasedimentary rocks; the
metasedimentary rocks include amphibole and calc-silicate hornfels probably derived
from a lower Paleozoic or upper Precambrian miogeoclinal protoliths (Miller, 1944;
Erskine, 1985). The metasedimentary rocks in the Paim Canyon Complex include less
quartzite and are deformed and metamorphosed to a slightly higher grade than
metasedimentary rocks in the Desert Divide Group.

The Desert Divide Group and the Palm Canyon Complex: are intrudéd by plutonic .
rocks of the mid-Cretaceous (93-99 Ma) Peninsular Ranges batholith. Hill (1984)
divided this batholith into early and later intrusive rocks. The early intrusive rocks
form relatively small stocks and plugs of medium- to coarse-grained quartz monzonite
intruded by hornblende gabbro. The quartz monzonite is also cut by northeast-trending
aplite and pegmatite dikes and a few quartz veins. The gabbro forms sham, steeply-
dipping contacts with the quartz monzonite and is deeply weathered.

The later intrusive rocks include tonalite, monzogranite, and granodiorite. These
intrusive rocks grade eastward into strongly deformed mylonitic rocks, characterized by
a well-developed east-dipping foliation and a northeast-trending lineation, associated
with the Palm Canyon Fault. Granitic rocks in the upper plate of the Palm Canyon Fault
include coarse-grained, foliated hornblende quartz diorite, medium- to coarse-grained
hornblende granodiorite, and biotite hornblende tonalite.

The Pleistocene Bautista Formation of Axlerod (1966) unconformably overlies
the Peninsular Ranges batholith and the Santa Rosa mylonite zone. The Bautista
Formation consists of poorly indurated fanglomerate deposits that were shed
southwestward during uplift of the Santa Rosa Mountains (Morton and Matti, written
commun., 1993).

Carbonate Rocks

Gray to white marble, characterized by dark layers of calcite containing a trace
of magnetite, occurs as fayers or large boudins separated by schist or gneiss in the Bull
Canyon Formation; streaks, lenses, and blebs of fine-crystalline calc-silicate hornfels
are scattered throughout the carbonate rocks. The marble contains 54.4 percent CaO

(Table 6) and has been mined for Portland cement, roofing granules, decorative stone,
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road base, rip rap, and building stone (Brown, 1980). Brown concluded that more than
140x108 tons of marble may be mined: from the Desert Divide Group by surface mining
techniques without removing overburden.

Table 6. Chemical analyses of carbonate rocks

Total alkalis (b) 0.02 0.09 trace
Total 58.04 59.44 57.86
LOI (¢) 41.97 40.62 42.16

(@) Total iron as FesO3
(b) Total alkalis = NapO+K>0O
(c) Loss on ignition

The Palm Canyon Complex contains strongly foliated and lineated marble and
calc-silicate rocks that contain finely comminuted calcite; impurities such as calc-
silicate minerals, chert, and siderite are locally abundant. White to light-gray
limestone marble occurs in large monoiithologic outcrops that are laterally continuous
for several 10s to 100s of feet; smaller lenses and bodies of brown dolomitic marble are
complexly interbedded with gneiss and schist. Marble from the Dolomite Mine (Table 1,
no. 41) was mined for roofing granules and decorative stone (Matti and others, 1983).
This mine, as well as the Harris Limestone Claims and the Nightingale Limestone Claims
(Table 1, nos. 39 and 40), were inactive in 1987 (Calzia and others, 1988).

RESOURCE POTENTIAL

Carbonate rocks are an important commodity for the construction, cement, and
chemical industries. For example, the cement industry in California consumes
approximately 9x10° tons of carbonate rocks each year; an additional 4.5x108 tons are
consumed annually by the construction, chemical, and pharmaceutical industries
(Carrillo and others, 1990; Bowen, 1973; Joseph, 1982). The classification and
resource potential of carbonate rocks are primarily a function of color, the amount of
lime, magnesia, silica, and other impurities in the rock, and the proximity to markets.
Generally, construction-grade carbonate rocks are darker, contain more impurities, and

have a lower unit value than do cement-grade carbonate rocks; chemical-grade
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carbonate rocks are white, bright, and contain less than 2 percent impurities. These
high-grade carbonate rocks can be transported relatively long distances to market
because of their relatively high unit value. This section describes the uses and grades of
carbonate rocks; these data are combined with the geologic and geochemical data to assess
the resource potential of carbonate rocks in the San Bernardino National Forest.

Mineral resource potential is defined as the likelihood of the presence of mineral
resources in a defined area; it is not a measure of the amount of resources or their
profitability. Based on available geologic, geochemical, and geophysical data, these
defined areas may be assigned low, moderate, or high mineral resource potential. Low
mineral resource potential is assigned to areas where the geologic, geochemical, and
geophysical data indicate that the existence of resources is unlikely. This level of
potential covers areas of widely dispersed mineralized rock and(or) areas with few (if
any) areas of known mineralization.

Moderate mineral resource potential is assigned to areas where the geologic,
geochemical, and geophysical data suggest a geologic environment favorabie for
mineralization. This classification does not require known and(or) exploited mineral
deposits, but the geologic environment must be compatible with genetic mineral

resource models.

High mineral resource potential is assigned to areas where the geologic,
geochemical, and geophysical data as well as the mining records are indicative of a
geologic environment favorable for mineralization. These areas are compatible with

genetic mineral resource models and are often used to refine or modify these modeis.

USES AND GRADES
Construction Grade

The most common use of carbonate rocks in the construction industry is a
crushed aggregate in road base. The crushed particies vary in size from 50 to 0.6 mm
(depending upon application as road base or base coarse material) and shouid be as cubic
as possibie with no laminations or cracks. Particle shape is important because cubic
particles interlock and press firmly into the asphait binder; flat elongate particles do
not interlock and develop voids that lead to premature breakup of the road surface
(Power, 1985; Tepordei, 1985; Danner, 1966).
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Crushed carbonate rocks are also used as roofing materials and as swimming pool
sand because these materials wear well, yield high reflectivity due to their color and
rhombohedral crystal structure, and have low porosity that resists water absorption.
Crushed patrticles vary in size from 19.2 to 2.4 mm and should be as white as possible to
reflect heat (Power, 1985; Danner, 1966).

Cement Grade

Raw materials necessary for the manufacture of Portland cement are lime,
silica, alumina, and iron; magnesium is not required but is permitted and often
beneficial at low concentrations (2-3 percent MgO). Lime in cement comes from calcite
in limestone, marble, or marl that contains 61.0-68.2 percent CaCQOg;; limestone with
as little as 53.9 percent CaCOg has been used but results in an inferior product.
Although specifications vary, most grades of Portland cement contain 12 to 15 percent
SiOo obtained from chert and quartz sand impurities in the raw materials; higher
concentrations increase mining and processing costs by excessive wear on drill bits as
well as crushing and grinding equipment. Alumina and iron are provided by clay or shale
impurities in limestone; most grades of cement contain <3.7 percent AloO3 and <6.0
percent total iron. Experience has shown that the ideal mixture of limestone to clay and
shale impurities is approximately 4:1; the ratio of silica to alumina plus iron
(collectively denoted as RoO3) varies from 1.5 to 3.5 and must be closely monitored to
control cost and produce a useful product. Finally, cement requires sulfur to control
setting times of the concrete. The sulfur is obtained from gypsum and(or) anhydrite and
is added in the final stages of the manufacturing process (Ames and Cuicliffe, 1983;
Danner, 1966; Power, 1985).

The raw materials are ground, blended, and roasfed to produce five types of
Portland cement (Ames and Cutcliffe, 1983). Since the specifications for each of these
types varies (Table 7), it is not possible to have the proper proportions of lime, silica,
alumina, and iron in a naturaily-occurring impure or cement-grade limestone to meet
all needs; in fact, fine grinding, blending of various grades of limestone, and close
control of the mixture are the norm in the manufacture of Portland cement (Ames and
Cutcliffe, 1983; Danner, 1966).

Chemical grade
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Most of the chemical-grade carbonate rocks produced in the Lucerne Valley
Limestone Mining District are used as fillers and extenders in the paper, paint, and
plastic industries. These products are commonly known as whitenings and are classified
by particle size, chemical purity, brightness, and yellowness. Although variable
between industries, specifications for finely-ground carbonate whitenings require that
at least 97 percent of the crushed particles, containing 68-71 percent CaCOg3, will pass
through a 45 micron (0.045 mm) sieve. Brightness and yellowness are synonymous
with whiteness and color. Brightness is defined as the ratio (expressed as a percentage)
of the radiation reflected from a sample to that reflected from a perfectly reflecting
diffuser at A=457x10"2 m (nm) with Elrepho; yellowness is defined as the difference
between the brightness ratio at A=570 nm and the brightness ratio at A=457 nm. These
finely-ground high purity carbonate whitenings have a specialized market and command
a premium price. The unit price of limestone whitening in 1979 was about $27 per ton
as compared to $2-3 per ton for limestone used in the construction industry (Power,
1985; H.J. Brown, written commun., 1930).

Specificaticns for the paper industry

Paper has been made from wood pulp fiber since the Industrial Revolution. The
pulp is cooked, bleached, and chemically processed to remove impurities.
Unfortunately, the chemical used for sizing (alum rosin) causes the paper to become
increasingly acid with time. This progressive decrease in pH causes the paper to become
discolored and more briitle. Since the 1970s, books have been printed on paper with
alkaline sizing to increase longevity, reduce costs, and improve paper quality (Power,
1985).

In addition to increased longevity, alkaline sizing also allows the use of CaCO3;
fillers as a partial replacement for the relatively expensive wood pulp and kaolin.
Limestone and marble are used as paper fillers in conjunction with adhesives (such as
starch and resin) to fill interstices between the wood pulp fibers, and as paper coatings
using a finer material with high brightness. Although specifications vary, the paper
industry requires that 30 to 40 percent of the carbonate particles used as filler in
paper pass through a 2 micron sieve and yield 85.5 percent brightness; 80 to 90
percent of the particles for paper coatings must pass through a 2 micron sieve and yield
89-96 percent brightness (Power, 1985; H.J. Brown, written commun., 1990). This
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finely-ground material contains 68.2 to 70.7 percent CaCO3 and <5 percent impurities
(Table 7).

Specifications for the paint industry

Limestone is used as a pigment, filler, or extender in paint. It is the primary
pigment in white ceiling paint and is used as a partial substitute for pigment in -
industrial, marine, anti-corrosive, and road making paints. The particle size of
limestone fillers and extenders in paint is generally less than 75 microns with 30 to 40
percent of the particles passing through a 2 micron sieve (Power, 1985; H.J. Brown,
written commun., 1990). This finely-ground material yields 85.5 percent brightness
and contains 68.9 to 70.4 percent CaCOj (Table 7).

Specifications for the plastics industry

In 1989, about 9,000 short tons of fine and ultra fine ground carbonate fillers
were used in plastics in North America; the largest markets were thermoplastics for the
automotive industry, plastic resins, and PVC products. Typically, the carbonate raw
material yields a minimum brightness of 84 percent and contains at least 70.7 percent
CaCOg3 and no more than 0.14 percent total alkalis (Table 7). The particle size of
limestone fillers in thermoplastics vary from 5 to 10 microns; fillers in PVC products
varies from 0.5 to 3 microns. Limestone fillers in resins vary in patticle size from 1
to 3 microns and constitute 20-40 percent of the product (Power, 1985; H.J. Brown,

written commun., 1980).
Metallurgical Grade

Limestone is used as a flux material in the iron and steel industries; the grade of
limestone used is dependent on the smelting technique. The ideal limestone flux used in
blast furnaces contains <3-5 percent SiO2 and minor amounts of AloO3, SO3, and P20y4;
the MgO content is not critical (Table 7). The lime content is variable but generally the
greater the CaO content, the better. Limestone used as fluxing agents in the open-hearth
process contains <2 percent SiOg, <5 percent MgO, =0.01 percent P20g4, and 0.5
percent SOz Grain size of the limestone flux is not critical because the limestone is

roasted and amalgamated with iron ore and coke to produce a sinter; this sinter is
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pelletized and used in either the blast furnace or the open hearth process (Power, 1985;
Danner, 1966).

Pharmaceutical Grade

Ultra fine ground carbonate rocks are used in the pharmaceutical and food
industries as fillers in cosmetics and medicines. Although variable, the specifications
for these products are more strict than those described in the preceding sections.
Briefly, the mean particle size of carbonate fillers in the pharmaceutical and food
industries is 2.4 microns; these fillers yield 95.0 percent brightness and contain more
than 71 percent CaCOg3 and less than 1 percent trace metals including iron and total
alkalis (Table 7). It is rare to discover and difficult to process a filler this pure in

naturally-occurring carbonate rocks so most pharmaceutical fillers are obtajned from
precipitated CaCO3 (Power, 1985; H.J. Brown, written commun., 1990).

RESOURCE POTENTIAL

Geologic and mining data indicate that ali of the carbonate rocks within the San
Bernardino National Forest have high resource potential for construction-grade
carbonate rocks. Many of these rocks, including the Furnace Limestone in the eastern
San Gabriel and the San Bernardino Mountains, the Nopah Formation and the lower
member of the Sultan Limestone in the San Bernardino Mountains, and marble in the
Desert Divide Group in the San Jacinto Mountains, have been guarried for roofing

granules or other construction stone for many years.

Geochemical data, combined with geologic and mining data, indicate that marbie in
the Desert Divide Group as well as the lower and the middle members of the Bird Spring
Formation have high resource potential for cement-grade carbonate rocks (fig. 3). The
upper member of the Bird Spring Formation generally contains too much SiO» for
cement-grade rocks; however, Brown (1987) reported that Pfizer Inc. and Pleuss-
Staufer have quarried white limestone marbie from this member for many years. In
addition, chemical data indicate that the Bonanza King and the Nopah Formations
generally contain too much MgO for cement-grade rocks; however, selected sampies of
white marble from the Bonanza King Formation meet the specifications of cement-grade
carbonate~ rocks (Fig. 3). Richmond (1960) reported that metamorphism of the Nopah

Formation along the contacts with the granitic batholiths locally results in cement-grade
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carbonate rocks. These data indicate that white marble in the Bonanza King Formation
and marble near intrusive contacts in the Nopah Formation also have high resource
potential for use as cement-grade carbonate rocks.

Geologic and geochemical data indicate that the Crystal Pass Member of the Sultan
Limestone and the middle member of the Monte Cristo Limestone have high resource
potential for chemical-grade carbonate rocks. The lower member of the Monte Cristo
Limestone meets the chemical specifications of cement- and chemical-grade carbonate
rocks (fig. 3); however, this member consists of gray and biack cherty limestone with
many chert lenses, layers, and nodules. The abundance of SiO2 preciudes mining the

lower member of the Monte Cristo Limestone for cement- or chemical-grade rocks.
CONCLUSIONS

Geologic, geochemical, and mining data suggest that the San Bernardino National
Forest contains more than 1 billion tons of construction-grade carbonate rocks and at
least 140 million tons of cement- and chemical-grade carbonate rocks (Table 8). The
demand for construction-, cement-, and chemical-grade carbonate rocks is projected to
increase at a moderate rate of 2 to 4 percent per year through the year 2000 (Tepordei,
1985; Carr and Rooney, 1983; Johnson, 1985); the greatest growth is expected for
carbonate-based whitenings in the paper, paint, and plastic industries. The use of
alkaline sizing in paper increased from 58 percent of the market in 1988 to 86 percent
in 1990; the amount of carbonate filler in the American paper industry ranges from 7
to 12 percent in the mid-1980s and is projected to increase to 30 percent by the year
2000 (Power, 1985). The large reserves of cement- and chemical-grade carbonate
rocks within the Lucerne Valley Mining District and the San Bernardino National Forest
are projected to meet local demand for these commodities beyond the year 2000
(Mitsubishi Cement Corp., written communication, 1993).

Table 8. Estimate of carbonate rock resources (in millions of tons) within the San

Construction Grade 1,015

Cement Grade 80
Chemical Grade 60
Total 1,155
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Table 3.

Chemical analyses of carbonate rocks in the Suitan Limestone

Sampies collected by J.C. Matti, C.T. Wrucke, and J.P. Caizia and analyzed by Mitsubishi Cement

Cog., Lucerne Vatle;, California under the sugervision of Michael Ganteribein, Mine Sugerintendent.

Crystal Pass Member
Spl. no 150-4 163-3 166-5 167-4 JF-126-1 JF-126-4 JF-128-5 JF-126-86 JF-133-6
Si03 3.69 1.64 2.25 3.75 1.56 0.83 1.48 1.56 4.05
Alo Oy 0.37 0.16 0.09 0.34 0.12 0.01 0.30 0.29 0.66
Feo Oy (a) 0.28 0.16 0.15 0.59 0.09 0.12 0.13 0.18 0.32
C20 52.68 54.67 52.68 38.36 55.33 55.68 54.66 54.31 50.18
MO 0.83 0.76 2.85 19.09 0.40 0.46 0.59 1.06 3.24
D3 0.07 0.07 0.08 0.08 0.01 0.07 0.07 0.06 0.07
Na, O 0.08 0.08 0.08 0.11 0.06 0.07 0.07 0.07 0.08
K0 0.18 0.13 0.10 0.19 0.09 0.09 0.17 0.12 0.25
TiO5 0.02 0.02 0.02 0.04 0.01 0.00 0.02 0.02 0.04
P,0y 0.01 0.01 0.01 0.01 0.06 0.02 0.02 0.00 0.01
Mno O3 0.04 0.03 0.03 0.08 0.02 0.02 0.02 0.02 0.03
LOI (b) 41.85 4219 41.74 37.47 42.18 42.75 42.58 42.36 41.14
Total 100.10 100.10 100.098  100.10 99.94 100.13 100.11 100.05 100.08
C3S (c) 315.50 356.50 337.00 196.80 366.70 384.60 364.10 356.60 285.90
Valentine Member
Spl.no  JF-124-1 JF-133-2A JF-133-28B JF-134-2 JF-134-3
"Si05 3.28 2.11 1.14 1.64 2.46
Al2Og 0.61 0.06 0.09 0.06 0.20
Feo Oy (a) 0.54 0.19 0.20 0.15 0.64
Cao 35.95 39.05 36.96 39.17 37.46
MO 23.30 19.92 21.34 20.86 22.01
SoFY 0.05 0.08 0.06 0.08 0.01
Naos O 0.10 0.11 0.11 0.11 0.11
K20 0.28 0.09 0.10 0.09 0.15
TiO4 0.06 0.01 0.01 0.01 0.02
P20y 0.27 0.03 0.04 0.04 0.12
Mno Oy 0.32 0.06 0.05 0.04 0.16
LOI (b) 35.34 38.39 37.94 37.83 36.60
Total 100.1099 100.10 100.10  100.10 99.94
CaS (c) 176.80 230.50 239.70 234.80 206.00

ironsides Member

Spl. no JF-127-3A JF-127-38

Gi0, 1.93 2.11
AiaOg 0.06 0.17
Fe-O3 (a) 0.33 0.42
C20 36.75 36.79
MO 23.35 23.34
Dj 0.07 0.06
Nao O 0.12 0.12
K20 0.09 0.10
TiO2 0.01 0.03
PoOg 0.02 0.01
MnoOq 0.04 0.05
LOI (b) 37.34 36.91
Total 100.11 100.12
CaS (c) 214.00 209.10

(a) Total iron a??egoa
{b) Loss on ignition, including H,OandCO,
{c) Tricalcium silicate = CaO (4.071) - SiOp (7.6) - (Alp O3+K20+TiO2) (6.718) - Fea O3 (1.43) - SO3 (2.852)
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Table 4. Chemical analyses of carbonate rocks in tha Monte Cristo Limestona
+ Samples collected by J.C. Matti, C.T. Wrucke, and J.P. Calzia and analyzed by Mitsubishi Cement

Corp., Lucerne Valley, California under the supervision of Michael Gantenbein, Mine Superintendent.
Yellowpine Member

Spl. no 159-2A 159-2B

S0, 16.66 2.33

Al Oy 1.51 0.10 .
Fo203 (a)  0.89 0.13

(>'s] 40.33  54.71

MgO 5.74 0.83

V3 0.23 0.06

N0 0.10 0.08

K20 0.42 0.10

TiO, 0.10 0.01

P20s 0.27 0.02

Mn 203 0.03 0.02

LO! (b) 33.66  41.65

Total 99.93 * 100.05 ’

CsS (c) 35.70 349.50

Bullion Mamber
Spl.no JF-132-5 160-1B 160-3 161-2 167-2 JF-131-2 JF-132-1

Si02 0.69 1.56  1.90 1.25 0.89 2.04 1.75
Al2O3  0.02 0.07 0.09 0.02 0.02 0.14 0.16
FepO3 (a) 0.03 0.13  0.14 0.11 0.09 0.18 0.41
Cad  55.92 54.70 54.61 55.54 55.92  54.82 54.40
MO 0.42 0.83 0.69 0.24 0.25 0.42 0.52
D3 0.07 0.07 0.06 0.07 0.08 0.01 0.06
Nag0O 0.07 0.07 0.07 0.07 0.07 0.08 0.07
K0 0.07 0.10 0.10 q.09 0.09 0.10 0.11
TiO2 0.00 0.01  0.01 0.01 0.01 0.01 0.01
P50Ox 0.00 0.01 0.03 0.02 0.00 0.01 0.02
MnoO3  0.02 0.03 0.03 0.05 0.03 0.03 0.05
LOt (b) 42.80 42.49 42.32 42,62 42.64 42,12 42.52

Totat 100.12 100.09 100.06 100.10 100.10 99.97 100.10
C4S (c) 389.00 365.20 358.50 376,60 384.60 356.70 359.30
Anchor Member

Spl. no 160-1A 164-1

505 2.99  16.52
Al203 0.18 0.43
Fep03 (a)  0.17 0.90
c0 52.95  44.52
MO 1.33 0.69
D3 0.08 0.08
Na O 0.08 0.08
K0 0.15 0.14
TiO2 0.02 0.04
Py 05 0.12 0.07
Mn3 O3 0.02 0.17
LO# (b) 41,99  36.46
Total 100.09  100.08

CeS (6) 328.30  79.90
"Dawn Mamber
Spl.no JF-128-3A JF-128-3BJF-128-3CJF-131-1 JF-133-5 164-6

Si0g 1.03 0.93 0.93 1.53 2.16 1.45
Al 03 0.05 0.03 0.01 0.04 0.24 0.13
Fe20; (a)  0.08 0.08 0.07 0.16 0.17 0.21
GO 55.33  54.01 54.22 5496  53.36 53.56
MO 1.92 2.50 2.41 1.76 2.70 2.33
D, 0.08 0.08 0.08 0.08 0.08 0.08
N0 0.08 0.08 0.08 0.08 0.08 0.08
KoO 0.10 0.09 0.08 0.08 0.17 0.09
TiO, 0.01 0.01 0.01 0.01 0.02 0.01
P,0x 0.01 0.02 0.01 0.01 0.01 0.01
Mn 203 0.02 0.02 0.02 0.03 0.02 0.06
LOI (b) 41.42  42.30 42.19 4137  41.11 42.08
Total 100.11  100.13  100.11  100.09 100.12  100.09

CaS (0) 370.50 368.40 369.30 360.90 337.80 355.30

(a) Total iron as Fep03

{b) Loss on ignition, including H2OandCO2

(c) Tricaicium silicate = CaQ (4.071) - SiO2 (7.6) - (Al2O3+K20+TiOp) (6.718) - Fe; O3 (1.43) - SO3 (2.852)
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Table 5. Chemical analysea of carbonate rocka in the Bird Spring Formation
Samples collected by J.C. Matti, C.T. Wrucke, and J.P. Calzia and analyzed by Mitsubishi Cement Carp.,
—-tucerne Valley, California_ he _supervision of Michael Gantenbein, Mine Superintendent.
Upper Member
Spl.no  153-1A 153-1B 154-2 154-4 155-3A 155-3B 156-2 157-1A 157-1B  157-2

SiO, 8.37 6.03 20.05 25.08 28.64 19.66 18.86 19.79 28.73 24.06
Ala Oy 1.27 0.69 2.66 3.05 2.39 2.24 1.45 2.67 3.78 1.60
Fe50 (a) 0.72 0.46 1.48 1.46 1.57 1.45 1.17 1.47 2.22 1.28
Ca0 47.57 50.84 39.37 35.99 35.62 39.82 41.46 39.29 30.51 38.09
MO 1.96 0.63 1.79 1.93 1.46 1.80 1.72 2.05 3.33 1.44
DOy 0.07 0.08 0.15 0.03 0.07 0.34 0.00 0.03 0.01 0.20
NaoQ 0.08 0.08 0.10 0.11 0.09 0.10 0.09 0.10 0.12 0.09
K>O 0.43 0.29 0.44 0.51 0.30 0.40 0.35 0.47 0.55 0.32
TiOy 0.08 0.05 0.18 0.20 0.19 0.15 0.10 0.17 0.26 0.11
P, 05 0.12 0.00 0.05 0.10 0.07 0.09 0.17 0.1t 0.08 0.07
Mn,04 0.05 0.05 0.05 0.05 0.04 0.04 0.03 0.04 0.04 0.05
LOI (b) 39.33 40.89 33.60 31.43 29.64 33.85 34.53 33.91 30.34 32.61
Total 100.06 100.08 99.92 99.94 100.07 99.93 99.93 99.99 99.97 99.95
CaS (c) 196.20 263.10 -20.60 -100.20 -131.60 -9.10 18.70 -18.60 -179.30 -61.80

Middle Member

Spl.no 157-3A 157-38 158-1 158-2

Si05 4.22 37.45 9.18 4.77

Aly O 0.40 5.14 1.07 0.22

fe,03 (a) 0.28 3.04 0.53 0.24

Ca0 51.74 26.41 49.07 52.88

MO 2.42 3.55 0.89 0.32

D4 0.03 0.68 0.01 0.06

Nas O 0.08 0.12 0.09 0.08

Ko O 0.14 0.74 0.20 0.12
TiO2 0.03 0.33 0.08 0.02

P05 0.00 0.12 0.01 0.01

Mn; Oy 0.02 0.05 0.03 0.03

LOI (b} 40.63 22.31 38.79 41.32

Total 100.00 99.94 99.94 100.06

C3S (c) 295.40 -281.70 198.50 301.80

Lower Member
Spl. no 159-1A 159-1B

Si0o 3.35 4,82
AloOs 0.26 0.48
205 (a) 0.20 0.35
0 @) 53.17 52.10
MgO 1.04 0.72
D4 0.06 0.02
Nas0 0.08 0.08
Ko O 0.18 0.18
TiO, 0.02 0.04
PpOg 0.10 0.02
Mn0s 0.02 0.06
LO! (b) 41.58 41.12
Total 100.06 99.99
CaS (0) 322.10 291.10
Undivided

Spl. no 148-2A 149-1 149-3 149-5 148-2B 148-3
Si0, 11.74 2.83 5.29 2.92 10.45 6.49
Aly O3 1.64 0.28 0.68 0.29 1.01 0.73
Fe,05 (a) 0.88 0.21 0.39 0.25 0.69 0.50
o o} 45.66 53.19 51.42 53.48 47.23 50.04
MO 1.21 1.16 0.98 0.48 0.98 0.93
D3 0.05 0.02 0.06 0.07 0.00 0.00
NaoQ 0.09 0.08 0.08 0.08 0.08 0.08
Ko O 0.39 0.16 0.28 0.18 0.26 0.20
TiOs 0.11 0.02 0.05 0.03 0.07 0.05
PoOg 0.02 0.09 0.04 0.01 0.02 0.01
Mno O3 0.03 0.02 0.03 0.03 0.03 0.02
LOI (b) 38.23 41.91 40.76 42.26 39.19 40.87
Total 100.04 99.98 100.05 100.09 100.01 99.91
C48 (o) 135.40 330.70 275.90 334.30 173.73 251.64

(a) Total Iron as FesOq
(b) Loss on ignition, including H»OandCQ 5
(c) Tricalcium sllicate = CaQ (4.071) - SiQp (7.6) - (Alp O3+K20+TiOz) (6.718) - Fes O3 (1.43) - SO (2.852)
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